jueves, 24 de mayo de 2012

TIPOS DE ENGRANAJES

Engranajes cónicos de dientes rectos

Efectúan la transmisión de movimiento de ejes que se cortan en un mismo plano, generalmente en ángulo recto aunque no es el único ángulo pues puede variar dicho ángulo como por ejemplo 45, 60, 70, etc., por medio de superficies cónicas dentadas. Los dientes convergen en el punto de intersección de los ejes. Son utilizados para efectuar reducción de velocidad con ejes en 90°. Estos engranajes generan más ruido que los engranajes cónicos helicoidales. En la actualidad se usan muy poco

Engranaje loco o intermedio

Detalle de engranaje intermedio loco.

En un engrane simple de un par de ruedas dentadas, el eje impulsor que se llama eje motor tiene un sentido de giro contrario al que tiene el eje conducido. Muchas veces, en las máquinas, esto no es conveniente, porque es necesario que los dos ejes giren en el mismo sentido. Para conseguir este objetivo se intercalan entre los dos engranajes un tercer engranaje que gira libre en un eje, y que lo único que hace es invertir el sentido de giro del eje conducido, porque la relación de transmisión no se altera en absoluto. Esta rueda intermedia hace las veces de motora y conducida y por lo tanto no altera la relación de transmisión.16 Un ejemplo de rueda o piñón intermedio lo constituye el mecanismo de marcha atrás de los vehículos impulsados por motores de combustión interna, también montan engranajes locos los trenes de laminación de acero. Los piñones planetarios de los mecanismos diferenciales también actúan como engranajes locos intermedios.

Engranajes planetarios

Mecanismo de engranajes interiores.

Los engranajes planetarios, interiores o anulares son variaciones del engranaje recto en los que los dientes están tallados en la parte interior de un anillo o de una rueda con reborde, en vez de en el exterior. Los engranajes interiores suelen ser impulsados por un piñón, (también llamado piñón Sol, que es un engranaje pequeño con pocos dientes). Este tipo de engrane mantiene el sentido de la velocidad angular.14 El tallado de estos engranajes se realiza mediante talladoras mortajadoras de generación.

La eficiencia de este sistema de reductores planetarios es igual a 0.98^(#etapas); es decir si tiene 5 etapas de reducción la eficiencia de este reductor seria 0,904 o 90,4% aproximadamente.

Debido a que tienen mas dientes en contacto que los otros tipos de reductores, son capaces de transferir / soportar mas torque; por lo que su uso en la industria cada vez es mas difundido. Ya que generalmente un reductor convencional de flechas paralelas en aplicaciones de alto torque debe de recurrir a arreglos de corona / cadenas lo cual no solo requiere de mas tamaño sino que también implicara el uso de lubricantes para el arreglo corona / cadena.

La selección de reductores planetarios se hace como la de cualquier reductor, en función del torque (Newton-metro).

Como cualquier engranaje, los engranajes del reductor planetario son afectos a la fricción y agotamiento de los dientes, (en ingles "pitting" y "bending").

Debido a que los fabricantes utilizan diferentes formas de presentación del tiempo de operación para sus engranajes y del torque máximo que soportan, la ISO tiene estándares para regular esto:

ISO 6636 para los engranajes,
Tornillo sin fin y corona

Tornillo sin fin de montacargas.
Artículo principal: Tornillo sin fin.

Es un mecanismo diseñado para transmitir grandes esfuerzos, que también se utiliza como reductor de velocidad aumentando la potencia de transmisión. Generalmente trabaja en ejes que se cruzan a 90º.

Tiene la desventaja de que su sentido de giro no es reversible, sobre todo en grandes relaciones de transmisión, y de consumir en rozamiento una parte importante de la potencia. En las construcciones de mayor calidad la corona está fabricada de bronce y el tornillo sin fin, de acero templado con el fin de reducir el rozamiento. Si este mecanismo transmite grandes esfuerzos es necesario que esté muy bien lubricado para matizar los desgastes por fricción.

El número de entradas de un tornillo sin fin suele ser de una a ocho. Los datos de cálculo de estos engranajes están en prontuarios de mecanizado.


Engranaje cónico hipoide.




Un engranaje hipoide es un grupo de engranajes cónicos helicoidales formados por un piñón reductor de pocos dientes y una rueda de muchos dientes, que se instala principalmente en los vehículos industriales que tienen la tracción en los ejes traseros. Tiene la ventaja de ser muy adecuado para las carrocerías de tipo bajo, ganando así mucha estabilidad el vehículo. Por otra parte la disposición helicoidal del dentado permite un mayor contacto de los dientes del piñón con los de la corona, obteniéndose mayor robustez en la transmisión. Su mecanizado es muy complicado y se utilizan para ello máquinas talladoras especiales

SISTEMA MECANICO (ENGRANAJE)

Se denomina engranaje o ruedas dentadas al mecanismo utilizado para transmitir potencia de un componente a otro dentro de una máquina. Los engranajes están formados por dos ruedas dentadas, de las cuales la mayor se denomina corona' y la menor 'piñón'. Un engranaje sirve para transmitir movimiento circular mediante contacto de ruedas dentadas. Una de las aplicaciones más importantes de los engranajes es la transmisión del movimiento desde el eje de una fuente de energía, como puede ser un motor de combustión interna o un motor eléctrico, hasta otro eje situado a cierta distancia y que ha de realizar un trabajo. De manera que una de las ruedas está conectada por la fuente de energía y es conocido como engranaje motor y la otra está conectada al eje que debe recibir el movimiento del eje motor y que se denomina engranaje conducido.1 Si el sistema está compuesto de más de un par de ruedas dentadas, se denomina 'tren.

La principal ventaja que tienen las transmisiones por engranaje respecto de la transmisión por poleas es que no patinan como las poleas, con lo que se obtiene exactitud en la relación de transmisión.


SISTEMAS MECANICOS


Un sistema mecánico maneja el poder para llevar a cabo una tarea que involucra a las fuerzas y el movimiento. mecánico se deriva del latín machina palabra que a su vez deriva del griego dórico μαχανά (machaná), jónico griego μηχανή (mechané) "artificio, máquina , el motor " y que a partir μῆχος (mechos), "significa, el remedio conveniente"
El Diccionario Inglés de Oxford define el adjetivo mecánico, experto en la aplicación práctica de un arte o ciencia de la naturaleza de una máquina o máquinas, y que se refieran a, o causadas por el movimiento, las fuerzas físicas, propiedades o agentes, como se trata a por la mecánica . Del mismo modo Merriam-Webster Dictionary define la "mecánica", como relativas a las máquinas o herramientas.

Un sistema mecánico consiste en  una fuente de alimentación y actuadores que generan fuerzas y el movimiento,  un sistema de mecanismos que conforman la entrada del actuador para lograr una aplicación específica de fuerzas de salida y el movimiento, y  un controlador con sensores que compara la salida a un objetivo de rendimiento y luego dirige la entrada del actuador. Esto puede verse en el motor de vapor de Watt (véase la ilustración) en la que dicha energía es suministrada por el vapor en expansión para impulsar el pistón. El haz de caminar, acoplador y manivela transformar el movimiento lineal del pistón en la rotación de la polea de salida. Finalmente, la rotación polea acciona el gobernador centrífugo que controla la válvula para la entrada de vapor para el cilindro de pistón.

SISTEMA ELECTRICO


Estos sistemas eléctricos se los denomina también de alta tensión o extra alta tensión, o sistemas eléctricos de transmisión o Red eléctrica de transporte.

Estos sistemas, por la gran extensión geográfica que ocupan; por los niveles de tensión en que funcionan, y por la gran cantidad de energía eléctrica que transporta, requieren de la supervisión y del comando a distancia, lo cual se realiza en los Centros de Operación y Control a través de los Sistemas SCADA.

Debido a que el funcionamiento de los sistemas eléctricos de corriente alterna tienen un comportamiento dinámicos, las condiciones de funcionamiento deben ser establecidas aplicando criterios de funcionamiento muy estrictos para evitar los problemas de estabilidad dinámica, que pueden llevar al sistema al estado de colapso. En estos estados de emergencia se producen apagones que dejan a gran cantidad de consumidores sin el suministro de energía eléctrica, necesaria para el normal funcionamiento de la vida moderna, y el sistema requiere la Restauración de cargas.

Otros estados de emergencia menos críticos pueden llevar al sistema al colapso de tensión. En este fenómeno partes del sistema eléctrico sufren caídas de tensión que afectan el funcionamiento de los artefactos eléctricos conectados a la red, lo que significa que la calidad del suministro eléctrico es deficiente.
Los ingenieros eléctrico o electricistas son los profesionales encargados del funcionamiento de los Sistemas eléctricos de potencia, realizando tareas de planificación y operación, en los cuales no sólo se tienen en cuenta aspectos técnicos y funcionales, sino también aspectos económicos, tratando en todo momento de minimizar los costos de operación de estos sistemas, y logrando que el crecimiento de la demanda de energía sea satisfecha convenientemente.

SISTEMA NEUMETICO


lunes, 21 de mayo de 2012

SISTEMA HIDRAULICO

El sistema Hidráulico para cualquier tipo de proyecto, se convierte en un sistema indiscutiblemente necesario.

Es importante destacar que dependiendo del tipo de proyecto que se esté desarrollando, su proceso constructivo puede variar en algunos casos, pero el principio que tiene relación con el manejo de los fluidos, es el mismo.

viernes, 11 de mayo de 2012

SISTEMAS TECNOLOGICOS

Cuando hablamos de sistema tecnológico nos vamos a referir a un conjunto de elementos y variables que van a contextuar la acción técnica humana. Aunque en sentido explícito el sistema tecnológico debería quedar incluido dentro del sistema técnico, históricamente la técnica es anterior a la tecnología. Nosotros vamos a tomar el nombre sistema tecnológico como un genérico que nos permita establecer las conexiones de una técnica con el sistema técnico en el que se inserta. También veremos, dentro del amplio marco del sistema tecnológico, las relaciones del sistema técnico con el sistema productivo que lo posibilita y el conjunto de relaciones que mantiene con otros subsistemas como pueden ser: los recursos, los sistemas de intercambio, los conflictos, los mecanismos de poder o los impactos que todo el entramado puede generar.